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Abstract— This study introduces a design methodology per-
taining to analog hardware architecture for the implementation
of the learning vector quantization (LVQ) algorithm. It consists
of three main approaches that are separated based on the dis-
tance calculation circuit (DCC) and, more specifically; Euclidean
distance, Sigmoid function, and Squarer circuits. The main
building blocks of each approach are the DCC and the current
comparator (CC). The operational principles of the architecture
are extensively elucidated and put into practice through a
power-efficient configuration (operating less than 650 nW) within
a low-voltage setup (0.6 V). Each specific implementation is tested
on a brain tumor classification task achieving more than 96.00%
classification accuracy. The designs are realized using a 90-nm
CMOS process and developed utilizing the Cadence IC Suite
for both schematic and physical design. Through a comparative
analysis of postlayout simulation outcomes with an equivalent
software-based classifier and related works, the accuracy of the
applied modeling and design methodologies is validated.

Index Terms— Brain tumor dataset, current comparator (CC),
distance calculation circuit (DCC), learning vector quantization
(LVQ) algorithm, low-power architectures.

I. INTRODUCTION

THE convergence of machine learning (ML) and bioengi-
neering has ushered in a new era in medical diagnosis,

offering innovative solutions to enhance accuracy, efficiency,
and personalization [1]. In the realm of healthcare, the synergy
between ML algorithms and bioengineering techniques holds
immense potential for advancing diagnostic capabilities [2].
ML excels in analyzing vast and complex biological datasets,
discerning patterns, and extracting meaningful insights [3].
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When integrated into bioengineering applications, such as
medical imaging, sensor technologies, and diagnostic assays,
ML facilitates more precise and rapid detection of various
medical conditions [4]. This collaborative approach not only
streamlines the diagnostic process but also enables the devel-
opment of tailored and patient-specific diagnostic tools. The
combination of ML and bioengineering in medical diagnosis
represents a paradigm shift, promising to redefine how we
identify and understand diseases, ultimately leading to more
effective and personalized treatment strategies [1].

Within the intersection of bioengineering and ML, the
exploration of low-power concepts emerges as a pivotal
aspect in revolutionizing medical diagnostic solutions [5], [6].
As the demand for portable and energy-efficient diagnostic
devices grows, incorporating ML algorithms into bioengi-
neering applications requires a keen focus on optimizing
power consumption [7]. Implementing low-power concepts
becomes particularly crucial in developing wearable diagnostic
technologies, remote monitoring systems, and point-of-care
devices [5], [6]. By harnessing energy-efficient designs and
leveraging innovative power management strategies, the syn-
ergy between ML and bioengineering not only enhances
diagnostic accuracy but also ensures the feasibility and sus-
tainability of these technologies in diverse healthcare settings.
The pursuit of low-power solutions in this collaborative field
reflects a commitment to creating accessible, patient-centric
diagnostic tools that can operate seamlessly in resource-
constrained environments [8].

The incorporation of analog hardware classifiers marks a
significant advancement in translating computational models
into real-world bioengineering applications [9], [10]. Analog
classifiers bring a unique set of advantages, seamlessly align-
ing with the low-power and high-efficiency requirements often
crucial in bioengineering devices [11]. Their ability to process
continuous signals aligns well with the inherent analog nature
of many biological processes, fostering a more natural inte-
gration within bioengineering systems [9]. The combination
of ML, bioengineering, and analog hardware classifiers holds
the promise of creating intelligent, energy-efficient diagnostic
tools that can operate with the speed and precision demanded
by healthcare applications [12]. This collaborative approach
not only enhances the capabilities of medical diagnostics but
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also contributes to the development of advanced, bio-inspired
computing systems capable of tackling complex challenges in
health monitoring and personalized medicine [13].

A high-level block diagram of an analog integrated clas-
sification system is analyzed in [14]. It can be used for
bioengineering applications based on the following concept.
At its core lies a low-power smart sensor, designed to capture
and preprocess relevant biological signals [15], [16]. This
sensor feeds into a low-power analog front end, acting as
the initial gateway for signal processing [17], [18]. The
analog front end, in turn, interfaces with a low-power analog
feature extractor [19], [20], [21], which extracts key features
from the signal for subsequent analysis. An analog memory
component [22] efficiently stores these features, allowing for
seamless and rapid retrieval during the classification process.
The heart of the system is the low-power analog classifier [10],
leveraging the analog nature of signals for real-time, energy-
efficient decision-making.

With a focus on meeting the power and space efficiency
demands of biomedical smart sensor systems [16], [23], this
study introduces a low-power analog integrated architecture
(three approaches) based on a learning vector quantization
(LVQ) classification algorithm. The proposed classifiers are
suitable for accurate smart sensor systems operating on battery
power, as they achieve high accuracy with power efficiency.
The development and validation of these designs are meticu-
lous, involving real-world brain tumor dataset [24]. Postlayout
simulations, conducted using a TSMC 90-nm CMOS process
through Cadence IC Suite, confirm the accuracy of the imple-
mented architectures, substantiated through a comparison with
a software-based counterpart. In addition, for a comprehen-
sive assessment, this article includes a comparative analysis,
evaluating the proposed classifier against analog-related
classifiers.

The rest of this article is organized as follows.
Section II offers the essential background information on
the implemented classification algorithm. Moving forward
to Section III, we delve into the high-level architecture of
the proposed classifier and explore the transistor-level imple-
mentations of its fundamental building blocks. The training
and tuning capabilities of this architecture are detailed in
Section V. In Section VI, we evaluate the classifier’s accu-
racy using two real-world datasets. Section VII conducts a
comparison study with related analog classifiers, summarizing
and discussing the main aspects. Finally, Section VIII serves
as the conclusion of this article.

II. LEARNING VQ

The LVQ algorithm is closely intertwined with the unsuper-
vised and learning methods of self-organizing maps (SOMs)
and vector quantization (VQ) techniques [25]. While VQ
and SOMs are geared toward unsupervised clustering and
learning, LVQ distinguishes itself as a supervised learning
approach. Furthermore, unlike SOMs, LVQ does not involve
the definition of neighborhoods around the “winner” during
the learning process, and it does not assume any spatial order
of the codebook vectors that are attributed as representatives
to each class.

LVQ serves a highly specialized purpose, primarily focused
on statistical classification and recognition [26]. Its sole objec-
tive is to delineate class regions within the input data space.
To achieve this, a subset of codebook vectors with similar
labels is assigned to each class region. Even if the class
distributions of input samples overlap at the class boundaries,
the codebook vectors in algorithms such as LVQ consistently
remain within their designated class regions. The quantization
regions, akin to Voronoi sets in VQ [27], are demarcated
by midplanes (hyperplanes) positioned between neighboring
codebook vectors.

What sets LVQ apart further is its unique approach to class
borders. LVQ selects specific Voronoi-like borders that serve
the role of separating Voronoi sets into distinct classes, thereby
achieving piecewise linear class boundary formation.

In terms of the update of the weights in the codebook vec-
tors, there has been a wide range of closely related techniques,
such as LVQ1, LVQ2, LVQ3, and OLVQ1 [25]. Due to the
need for a continual approximation of the class borders even
for large number of training iterations, the LVQ3 algorithm
was selected as the software and parameter-tuning backbone
of this work.

All in all, LVQ3—similar to the previously mentioned
algorithms—assigns a predefined number of Nv codebook
vectors to each of the Nc different classes and searches for the
codebook vector wi with the least euclidian distance (different
distance metrics are also used) to the input sample x according
to the following equation:

c = argmin
i∈{1,2,...,Nv}

∥wi − x∥. (1)

The point where LVQ3 differentiates pertains to the update
of only two codebook vectors wi and w j , where wi is the
closest vector that belongs to the same class as x and w j is
the closest vector that belongs to a class different than x . This
update rule can be described via the equations

wi (t + 1) = wi (t) + a(t)[x(t) + wi (t)] (2)

w j (t + 1) = w j (t) − a(t)
[
x(t) − w j (t)

]
. (3)

In this case, α ∈ [0, 1] serves the role of the learning rate
during the training procedure.

The aforementioned mechanism is differentiated, in case the
minimum-distance representatives wi and w j have identical
output class prediction as the ground-truth label of input x
and take the following formulation:

wk(t + 1) = wk(t) + ϵa(t)
[
x(t) − w j (t)

]
, k ∈ {i, j}. (4)

It should be noted that the second part of the weights’
update rule introduces a scale-down constant ϵ ∈ [0,1] of the
learning rate α(t) to avoid overfitting and exploding gradient
phenomena. For the same reasoning, the algorithm imposes a
certain window-based area s = (1 − w)/(w + 1) of width w

∈ [0, 1] around the midplane defined by the vectors wi and
w j for the update mechanism to take place

min
(

wi

w j
,
w j

wi

)
> s. (5)
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Fig. 1. Proposed classifier architecture comprises two class cells, each
composed of 13 DCCs, and a CC that determines the winning class by
comparing the two input currents.

III. PROPOSED ARCHITECTURES AND CIRCUITS

In this section, we analyze the proposed analog high-level
architecture of the classifier, along with the basic building
blocks. The high-level architecture consists of distance cal-
culation circuits (DCCs), cascode current mirrors (CMs), and
a current comparator (CC). In this work, three different DCCs
are implemented, analyzed, and used as basic building blocks
in the proposed architecture. The summation of the classes’
output node is carried out through the cascode CMs. These
are utilized in order to minimize potential distortions in the
calculations that might arise from undesirable effects on the
output currents of the DCCs.

A. System Analysis

The high-level architecture of the LVQ classification system
regards a general-purpose problem with Nc = 2 classes,
Nd = 13 feature inputs, and Nv = 1 codebook vectors per
class and is depicted in Fig. 1 (the selection of the number of
classes and features is related to the classification task). As it
is shown, both classes receive the same input characteristics,
with their tuning pertaining to the different weight parameters
Xr (Vr or Ir ). Since a single codebook vector is being utilized
in this work for low-power consumption purposes, each class
holds a single 13−D representative vector. Each class structure
outputs a distance metric current, which could be chosen to be
proportional or reversely proportional to the multidimensional
Euclidean distance between X in (Vin or Iin) and Xr based
on (1). As a result, this capability of circuit choice leads to
the necessity for modified class architecture, with a parallel
topology similar to Fig. 2. It is needed when Iout ∝ |X in − Xr |.

Next, the class output currents are directly compared via a
CC, which leads to the indication of the winning class. Based
on the distance circuit utilized, CC should be a loser-take-
all decision-making circuit. The aforementioned circuit comes
with the advantage that the output representation is in a binary
format.

In terms of potential limitations of the proposed architecture,
one should mention that parallel-connected DCCs as in Fig. 2
come with the drawback of increased output current, especially
for the losing classes. That could lead to increased distortion
at Kirchoff’s law summation on the CM between the class
and the CC block. Overall, when tuned accordingly, this
implementation can provide competitive results both in terms

Fig. 2. Implementation of proposed classifier’s class i (class 1 or class 2).
It comprises 13 DCCs that describe the appropriate distance metric for each
feature, along with a cascode CM used to implement the current summation
on the output node.

of classification accuracy and power savings, as demonstrated
in Section VI.

Given that achieving a low-power design constitutes a pri-
mary objective of this study, all transistors function within the
subthreshold region, with the power supply rails established
at VDD = −VSS = 0.3 V. The choice of fundamental
building blocks and power supply levels is driven by a delicate
balance between attaining high accuracy, minimizing power
consumption, and ensuring the correct operational principles
of the entire classifier. Furthermore, we conduct noise-transient
simulations to assess the behavior of the proposed classifier.
The classification outcome demonstrates notable resilience,
suggesting that errors arising from internal noise are relatively
minor compared to those stemming from data inaccuracies.
We have also confirmed that noise does not degrade the
accuracy and precision of circuit operation, especially in this
application, as the signal levels are not close to the noise
floor. The rms voltage for the signal (square pulse) is equal
to VsigRMS = 35 mV, and the integrated noise over the
relevant bandwidth (BW) (1 Hz–200 KHz) is equal to Vnoise =

13.71 µVrms (based on the simulation results).

B. Euclidean Distance Circuit

The first circuit to be examined as DCC is the one that
emulates the Euclidean distance function required by the LVQ
algorithm and is depicted in Fig. 3 [28]. The circuit comprises
two double differential pairs that receive voltage values X in =

Vin and Xr = Vr as inputs.
In case the input Vin is higher than the mean value Vr ,

the left-hand side differential amplifier produces an output
current Iout1 that is proportional to the potential difference
Vin − Vr . In a similar manner, when Vr < Vin and assuming
symmetrical sizing for all transistors Mp1–Mp4 as shown in
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Fig. 3. Schematic of the Euclidean distance circuit. The output current Iout
is produced proportionally to the voltage gap |Vin − Vr |.

TABLE I
TRANSISTORS’ DIMENSIONS FOR THE EUCLIDEAN

DISTANCE CIRCUIT (SEE FIG. 3)

Fig. 4. (a) Output current of the Euclidean distance circuit as a function
of Vin for a range of bias voltage values VB ∈ [150, 300 mV]. (b) Output
current of the Euclidean distance circuit as a function of Vin for a range of
mean voltage values Vr ∈ [−100, 100 mV].

Table I, an equivalent increase is noticed at the Iout2 node,
while Iout1 currents derails to zero.

The biasing of the circuit is regulated via the W/L ratio and
the gate input voltage VG = VB at the pMOS-type transistor
Mp5. The voltage VB tunes the bias current Ibias of the circuit.
In particular, an increase in VG leads to a drop-off in output
current due to a lower |VGS| value, as shown in the parametric
analysis of Fig. 4(a).

The final output current, after correct sizing of the CM
transistors Mn1–Mn4, is directly proportional to the output
currents Iout1 and Iout2 and is given by the following equation:

Iout = Iout1 + Iout2. (6)

In terms of the operation region, the circuit functions
adequately well over small potential differences |Vin − Vr |,
with a suboptimal output current being noticed for voltage
gaps that are close to the rail voltages VDD = − VSS = 300 mV,
as shown in Fig. 4(b). Thus, as described in Section V, the
optimal region of functionality for the Euclidean distance
circuit is set at the [−100, 100 mV] range.

Fig. 5. High-level schematic of the proposed SFC. It consists of an nMOS
cascode CM, an nMOS WTA circuit, and a pMOS CM. The Ir parameter
current tunes the mean value, and Ibias alters the height of the Sigmoid
function curve.

C. Sigmoid Function Circuit

In this section, an alternative implementation of a Sigmoid
function circuit (SFC) [29] is introduced. The proposed SFC
consists of three main subblocks, an nMOS cascode CM,
a pMOS CM, and an nMOS winner-takes-all (WTA) circuit.
The cascode CMs are used to enhance mirroring even for
small bias currents. By using cascode CMs, the channel-length
modulation effect (early effect) is reduced, and the quality
of the mirroring is increased. Also, the cascode configuration
provides some level of immunity to noise and interference,
improving the signal-to-noise ratio and overall performance of
the circuit. A typical SFC consists of a differential pair, which
(in this implementation) is replaced by the nMOS WTA in
order to achieve a sharper Sigmoid function curve. The WTA
circuit is used because it provides higher linearity compared
to a typical differential pair. The proposed SFC is illustrated
in Fig. 5.

The circuit configurations of the nMOS WTA circuit
designed for two inputs are also shown in Fig. 5. The pMOS
WTA circuit serves as its symmetric counterpart and can be
easily designed. It is constructed using four nMOS transistors
with (W/L) = (400/1600 nm). These transistors operate
in the subthreshold region and are biased by a constant
current denoted as Ibias. The functioning of the WTA circuit
is illustrated in Fig. 6 [30]. In this context, Ibias is set at 5 nA,
where Iin1 represents a parametric current equivalent to Iin,
and Iin2 is fixed at 6 nA (Ir ). If Iin1 > Iin2, then Ion1 = Ibias
and Ion2 = 0. For equal input currents, then the output currents
are equal too. In a different scenario, Ion2 = Ibias and Ion1 = 0.

The electronic adjustment of the Sigmoid function’s height
and center is accomplished by manipulating two circuit param-
eters: Ibias and Ir . An additional parameter, Vc (associated with
bulk-controlled transistors), can be introduced to fine-tune the
width of the Sigmoid function although it does not impact
the classification accuracy (for this circuit). These parameters
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Fig. 6. In this configuration, Ibias = 5 nA, Iin1 is a parametric current equal
to Iin, and Iin2 = Ir = 6 nA. The output current for both neurons as function
of the input current Iin1.

Fig. 7. (a) Output current of the SFC as a function of Iin and parameterized
on Ibias, for Ir = 5 nA. (b) Output current of the SFC as a function of Iin
and parameterized on Ir for Ibias = 5 nA.

are determined during the training process of the classifier,
which is carried out through a software-based implementation.
The bias current Ibias, as shown in Fig. 7, adjusts the height
of the resulting Sigmoid output current while maintaining a
constant Ir = 5 nA. The mean value of the derived Sigmoid
function is modified by the current Ir , as illustrated in Fig. 7,
while keeping the value of Ibias = 5 nA constant. The SFC’s
transistor dimensions are equal to (W/L) = (400/1600 nm)

(for nMOS) and (W/L) = (1600/1600 nm) (for pMOS).

D. Squarer Circuit

The implemented Squarer circuit is shown in Fig. 8 and
operates entirely in the current domain [31]. The implemented
design leverages the translinear principle, which is commonly
employed to efficiently realize current multiplication and divi-
sion in current-mode circuits. Transistors Mn1, Mn2, Mp1, and
Mp2 form a translinear loop that makes up the core of the
presented architecture. Analysis of this loop yields

Iout =
I 2
in

Ir
. (7)

The topology is expanded with CMs to buffer the input
and output currents, isolating the translinear core and ensuring
proper operation of the circuit. The cascode CMs are used to
enhance mirroring even for small bias currents. It is also noted

TABLE II
TRANSISTORS’ DIMENSIONS FOR THE SQUARER CIRCUIT (SEE FIG. 8)

Fig. 8. Translinear circuit for computing (I 2
in/Ir ). It is a Squarer function

circuit. Both Iin and Ir tune the output current.

Fig. 9. (a) Output current of the Squarer circuit as a function of Iin and
parameterized on Ir . (b) Output current of the Squarer circuit as a function
of Ir and parameterized on Iin.

that for (7) to hold true, the transistor pairs of Mn1, Mn2 and
Mp1, Mp2 must have the same aspect ratio, i.e., (W/L)n1 =

(W/L)n2 and (W/L)p1 = (W/L)p2, which is also shown in
Table II. The output current follows the expected behavior
of (7), as shown in Fig. 9. The current Ir is used for tuning
the output current, as depicted in Fig. 9.

E. Loser-Take-All Circuit

Designing and using a DCC as the key metric for calcu-
lating the association of inputs with their prototypes imply
that, now, the winning class corresponds to the classification
block with the smallest output current. Therefore, it becomes
necessary to make use of a circuit, which will correspond to
the argmin operator for the Nc different classes. Such a circuit
is shown in Fig. 10 [32].

Regarding its operation, it suffices to consider the case
where one of the input currents is much smaller, for instance,
Iin1. This will then cause the voltage at the node VGMp1 and
VDMp1 to rise, as the transistor Mp1 is driven into the cutoff
region. In fact, the increase in the drain is larger due to the
increased impedance (VDMp1 is connected to the gate of Mn1).
Thus, for the nMOS transistor, it is true that the voltage VGSMn1
increases since VGSMn1 = VDGMp1 = VDMp1 − VGMp1 > 0.
By corresponding reasoning, if we have two classes with the
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Fig. 10. Two-neuron standard LTA circuit schematic.

Fig. 11. Output currents of the LTA circuit. In this configuration, a biasing
current Ibias = 5 nA is being utilized. Iin1 is a parametric current equal to
Iin and Iin2 = 6 nA. The output current for both neurons is a function of the
input current Iin1.

same input current (let Iin1 = Iin2), then we get Iout1 = Iout2 =

(Ibias/2) due to the same potential difference VGS in the output
nMOS transistors.

The results of a two-input LTA circuit are presented in
Fig. 11, where its functionality is validated. It should be
mentioned that in contrast to the sharp decision boundary that
the WTA circuit exhibits in Fig. 6, the LTA circuit is showing a
significantly more linear region, leading to potential multiple
winners’ phenomena. However, since LTA is being utilized
alongside parallel-connected codebook vectors, the necessity
for a cascaded topology [14] is minimized due to the increased
gap between the current of the losing class and the rest. As a
result, two extra LTA blocks are being saved, leading to a
decrease in power consumption.

IV. DESIGN PROCEDURE

In this section, we will analyze the process of selecting
the specifications and design parameters for the proposed
architecture. Starting from the power supply, the choice
was made based on low power consumption and proper
circuit operation in the subthreshold region over process–
voltage–temperature (PVT) variations [33], [34], [35], [36].
Specifically, for low-power applications, the ideal operating
region is subthreshold, where devices should be biased with
VGS voltages almost equal to Vth (which increases with
decreasing temperature due to the increase in carrier mobility)

and VDS ≥ 4VT where VT = kT/q (temperature-dependent)
[33], [34], [35], [36]. The implemented DCCs have branches
consisting of a maximum of three or four transistors. For
a maximum temperature of 125 ◦C, the value of VT is
34.322 mV. Therefore, in the worst case scenario for transistor
operation, VDD − VSS = 549.152 mV is required. To allow
margin for reducing over voltage variation (for example, lower
case: VDD − VSS = 0.5 V), we choose a supply equal to
VDD − VSS = 0.6 V. The choice of the same supply for all
DCCs was made for fair comparison purposes.

The selection of dimensions in each DCC is a complex
and multiparameter process. Specifically, as W (width) and L
(length) of the devices increase, there is an increase in the
total area occupied. Based on previous implementations, the
goal is to contain all three implementations within a total
area smaller than 0.25 mm2 based on the literature [33],
[34], [35], [36]. According to both literature and simulations
(for the subthreshold region), opting for a small value of
W and as large as possible for L is desirable. Specifically,
increasing W (more conducting channels) leads to an increase
in leakage current, while increasing L tends to reduce it due
to decreased drain-induced barrier lowering (DIBL) effects.
Similarly, the bias currents were selected to be significantly
larger than the corresponding leakage currents [33], [34], [35],
[36]. They also have the same effect on the current flowing
at each node. Furthermore, VGS voltage is small with low
current values, and because Vth is quite small in the current
technology, biasing in the subthreshold is feasible for a large
L and relatively small W . The value of Vth increases with both
the increase in L and the decrease in W (reducing the gate-
channel capacitance). Furthermore, flicker noise is reduced
with the increase of L . The choice of value also depends on
the desired noise level, which, based on transient simulations,
is not more affected by data inaccuracies [33], [34], [35],
[36]. The simulation results regarding the noise level on the
output node for the three implementations are summarized in
Fig. 12. In addition, with an increase in W and L values,
there is an increase in parasitic capacitances, which decrease
the desired BW of the classifier. This results in a reduction in
its processing speed. The effect of the choice of dimensions
on the input–output transistors, which create the dominant pole
through the parasitic capacitors, is shown in Fig. 13, both with
the alteration of W (values) and with the L (values). Our goal
was above few KHz based on the literature [37]. Also, the low
supply voltage of the system leads to reduced BW.

The systematic offset is heavily connected to the design
process. A specific offset may be a parameter of the design.
However, design faults can lead to these kinds of offsets.
In order to size appropriately the architecture’s transistors, Pel-
grom’s model is also used [38]. The variance of the Gaussian
distribution, which is related to the device’s parameters on the
wafer, is derived as

σ 2(1P) =
A2

P

W L
+ S2

P D2 (8)

where 1P is the difference in some device parameter P
between two devices spaced a distance D apart. AP and
SP are proportionally constants obtained from experimental
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Fig. 12. Noise level for the three implementations on the output node.

Fig. 13. Effect of the choice of dimensions on the input–output transistors,
which create the dominant pole through the parasitic capacitors. In this graph,
we alter both W and L .

measurements. The related equations for Vth and β are

σ 2(Vth) =
A2

Vth

W L
+ S2

Vth
D2 (9)

σ 2(β)

β2 =
A2

β

W L
+ S2

β D2. (10)

In order to reduce the mismatch in Vth and β, we should
increase the dimensions of transistors. Based on the previous
paragraph and Pelgrom’s model, we can find the optimum
value for W and L [38]. Last but not least, the mismatch
in a simple CM can be minimized by the area of the device
and decreasing the ratio (gm/ID). In the weak inversion, the
transconductance is given by

gm =
ID

nVT
(11)

where n represents the ideality factor of the transistor. Based
on (11), the mismatch in a simple CM is given by

σID

ID
=

1
nVT

AVth
√

W L
. (12)

In comparison with strong inversion, in weak inversion, the
mismatch can be reduced by increasing W or L . The selection
of dimensions was made aiming for a small variation in current
mirroring, less than 5% over PVT variations. The effect of a

Fig. 14. Effect of mismatch for different values of W and L . For lower sizes,
the output current has a large variance in comparison with the input current.

mismatch for different values of W and L is shown in Fig. 14.
The larger the dimensions of the devices (differential pair or
CM), the smaller the variation between the input and output
current, at the cost of the total area. This is also confirmed
by (12). To achieve the desired mismatch (below 5%), the
product W · L must be greater than 1.92 µm2 (e.g., W =

0.8 µm and L = 2.4 µm).

V. TRAINING AND TUNING CAPABILITIES

The aforementioned proposed architectures have been devel-
oped based on the premise that accurate control can be
achieved via a variety of voltage and current signals. Since
it consists of different DCCs, it mainly includes the mean
values Vr and Ir , alongside biasing parameters for all dif-
ferent distance metric blocks. Such versatility is of high
significance when fabricating a prototype chip since software
and/or hardware variables could need to be altered in order
to ensure accurate on-the-edge deployment. Furthermore, the
classification system is capable of having a changeable number
of inputs and classes according to the dataset provided each
time for training and inference.

A. Offline Training

In terms of training, a software system that emulates the
LVQ classifier is set up. The given dataset is first normalized
to the voltage/current range that is within the optimal range
of the designed distance metrics. In this work, the mean
voltage Vr is clamped within the values of [−100, 100] mV
based on the results of the parametric analysis of Fig. 4(b).
On the other hand, for the current-controlled Squarer circuit,
the equivalent operational range was set at the [3, 12] nA,
while it was extended to a [3, 15] nA width for the Sigmoid
function due to its improved functionality for higher current
values, as demonstrated in Fig. 7. In all variations, the software
counterpart is being trained for a fixed number of epochs and
learning rate values α(t) and ϵ based on (4). At the same
time, according to the hardware distance circuit that is being
utilized each time, the software-based distance criterion is
being switched in order to minimize the difference between
the software and hardware models.
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The extracted mean values for the codebook vector of each
class are then preprocessed in software in order to correspond
to the mean values [Vri ]

Nd
i=1 or [Iri ]

Nd
i=1, where Nd is the

number of features of the referred dataset. For each software
model, such a software/hardware co-design process is needed
only once, and the changeable parameters are exported and
stored in some form of memory (either analog memristive
type or digital accompanied by low rate ultralow-power data
converters [22], [39]). In terms of the biasing parameters, those
were determined outside the software-based loop, in order to
guarantee proper circuit operation, while minimizing power
consumption. Consequently, Ibias in all different circuits was
set at 10 nA.

B. Architecture Tunability

All the proposed combinations of circuits in the system
architecture can be easily adjusted for a wide range of input
dimensions and the number of classes. This can be achieved
via the versatile configuration of the proposed architecture in
Fig. 1, where the circuit blocks used can be easily deactivated
via their biasing parameters. In particular, such ON-OFF
behavior is quite intuitive in the case of the Euclidean and
Sigmoid circuits, which all need an appropriate Ibias current
for their proper operation. On the other hand, switching off the
Squarer distance metric can only be achieved approximately
by adjusting Iin and Ir in the case where Iin ≪ Ir , which
would lead to sub-nA current output according to the para-
metric results in Fig. 7. An alternative implementation of the
switching behavior of the various circuit blocks would require
the deployment of a MOSFET switch or a transmission gate
between the circuit output node and the following CM.

Based on the aforementioned techniques, a variety of differ-
ent classification tasks with nd < Nd features could be tackled
from a single fabricated LVQ chip with Nd initial distance
metric functions per class, without the need to iterate the same
design procedure proposed in this work. However, someone
should consider different methodologies for such purpose for
the parallel connected topology of Fig. 2, where a total of
Nd − nd circuits should be cutoff via proper tuning of the Ibias
parameters. Alternatively, similar behavior can be achieved
by carefully setting X in and Xr values in order to achieve
negligible current output. In particular, for the Squarer and
Sigmoid circuits, that would require Iin ≈ 0 nA. It should
be noted that cutoff of the Euclidean block is only feasible
for Vb = VDD = 300 mV since all combinations of Vin and
Vr —for Vb < 300 mV—would lead to nonzero correlation
output current.

Similar tuning capabilities are possible for a smaller classifi-
cation problem of nc distinct classes in contrast to the initial Nc

codebook vectors fabricated. The main purpose of such a task
would pertain to the minimization of the output current in the
nonutilized Nc − nc codebook vectors. For parallel-connected
codebook vectors as in Fig. 2, the zero current-output methods
described previously for the Sigmoid, Euclidean, and Squarer
circuits can be deployed for all the Nd circuits of the remaining
Nc − nc codebook vectors.

Finally, the most significant adjustability of the classification
chip is relevant to the electronic tunability of its different

Fig. 15. Layout of the proposed classifier architectures. The total area is equal
to 0.2148 mm2. This layout consists of the three classifiers (more specifically:
three types of DCCs, CMs, analog switches, and a CC).

parameters. That is achieved since Vr and Ir weight values are
derived from a software-implementation, allowing an upgrade
in performance, in case a more sophisticated LVQ algorithm is
developed. Thus, the overall design is not hindered by the need
for an early fabrication and deployment of the classification
chip.

VI. BRAIN TUMOR DATASET AND SIMULATION RESULTS

The LVQ-based classification systems designed above were
tested on a real-world dataset in order to prove the validity of
the proposed methodology. A direct comparison between the
software and hardware implementations is provided in order
to gather knowledge about the accuracy and sensitivity of the
analog classifiers. Design, simulation, and layout procedures
were all conducted on the Cadence IC suite in a TSMC
90-nm CMOS process. The layout’s implementation, as shown
in Fig. 15, is based on the common-centroid technique, and
additional dummy transistors are incorporated to mitigate
mismatches and address manufacturing considerations. The
total area is equal to 0.2148 mm2 (the layout incorporates
the three analog classifiers). All the simulation results are
conducted from the layout. It combines the two classes and the
CC. Each class comprises the three types of DCCs (both 13
Euclidean, 13 Sigmoid, and 13 Squarer circuits), a CM, and a
switch used to select the suitable circuits. Each class consists
of three 13 DCCs (Euclidean, Sigmoid, and Squarer), a CM,
and a switch in order to select the appropriate circuits.

When it comes to the data acquired, the Brain Tumor
feature dataset [24] that was utilized includes 1640 images that
were processed for feature extraction purposes. Those refer
to different attributes for the brain tumor classification task,
which can be shown in Table III. In particular, 13 features
were included for training and testing of the software LVQ
pipeline, where five of those are first-order statistical features
and the eight remaining are relevant to the image texture.
The classification problem setup is binary, with the objective
being the correct prediction of an existing tumor based on the
features.

As a result of the dataset structure, all the implemented
hardware architectures included two distinct classes for tumor
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TABLE III
EXTRACTED FEATURES FROM THE BRAIN TUMOR DATASET

TABLE IV
CLASSIFICATION RESULTS ON THE BRAIN TUMOR

DATASET OVER 1000 ITERATIONS

Fig. 16. Classification results of the LVQ (based on the Euclidean circuit) and
the equivalent software model on the brain tumor dataset over 1000 iterations.

detection, with each class consisting of 13 distance metric
circuits in a parallel way of connection. Finally, due to the
abundance of data, an 80%–20% training–testing split was
utilized, resulting in a test set of 329 images for validation.

In order to minimize potential overfitting phenomena, all
three distinct LVQ classifiers underwent the training–testing
procedure for 1000 times with the relevant results being
summarized in Table IV and Figs. 16–18. More specifi-
cally, to account for random effects induced by the training
algorithm, these 1000 separate software-based training itera-
tions are conducted to extract the necessary parameters of the
LVQ. As it can be clearly shown, all three implementations
can achieve near-perfect accuracy results on the best train–test
split. Furthermore, the software–hardware comparison vali-
dates the precision of all topologies, as they exhibit a sub-1%
decrease between mean software and hardware performance.
Note that there is a slight decrease in hardware accuracy

Fig. 17. Classification results of the LVQ (based on SFC) and the equivalent
software model on the brain tumor dataset over 1000 iterations.

Fig. 18. Classification results of the LVQ (based on the Squarer circuit) and
the equivalent software model on the brain tumor dataset over 1000 iterations.

compared to software. This is primarily because the circuits
generate an approximation of the requested functions (DCCs)
but are not ideal. However, the training of the parameters forms
the foundation of their ideal model. However, in terms of
minimum and mean classification performance, the Euclidean
circuit-based classifiers show a slight drop-off in contrast
to all the other two configurations. On the other hand, the
Euclidean configuration, despite its minor deficiency when it
comes to accuracy, can be worth mentioning power savings
since it leads to the lowest power consumption. Finally, based
on the 1000 iterations’ testing, the architecture that achieves
both competitive classification results and decreased power
consumption is the one with the Sigmoid distance metrics as
codebook vector representatives.

Apart from the 1000-iteration test, the designed analog
circuits should be tested for their sensitivity in PVT variations.
Thus, a Monte Carlo analysis (over process and mismatch
variations) was implemented with N = 5000 distinct points
(6σ ). The overall results are summarized in Fig. 19, and their
statistical attributes are presented in Table V for Euclidean,
Sigmoid, and Squarer implementations, accordingly. All three
implementations are proven to be robust, maintaining a worst
case accuracy of above 97%. At the same time, the calculated
variance in all three cases is below the 1% mark, thus validat-
ing the acceptable sensitivity characteristics of the proposed
classifiers.
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Fig. 19. Postlayout Monte Carlo simulation results of the LVQ (for each
DCC circuit) on the brain tumor dataset.

TABLE V
MONTE CARLO ANALYSIS SIMULATION RESULTS

Apart from the Monte Carlo analysis, the proposed clas-
sifiers undergo testing to account for PVT variations. The
selected corners encompass TT, SS, FF, SF, and FS (T: typical,
S: slow, and F: fast). In addition, the power supply rails
fluctuate within the range from VDD = −VSS = 0.25 V
to VDD = −VSS = 0.35 V. Regarding temperature, the
assessed spectrum spans from −25 ◦C to 125 ◦C. All three
implementations exhibit resilience across corners, maintaining
a minimum classification accuracy of 91.44%, 92.66%, and
93.08% for the Euclidean, Sigmoid, and Squarer circuits as
DCC, respectively, under the worst case scenario. The most
challenging corner scenario emerges with SS, −25 ◦C, and
VDD = −VSS = 0.25 V, coupled with reduced software-based
accuracy (worst case).

A key attribute in a classifier accelerator circuit is
its processing speed while maintaining sufficient accuracy.
Specifically, by computing the settling time of each individual
block, the highest accuracy is attained when the classifier
achieves a rate of 50k classifications per second for E-LVQ
and 80k classifications per second for the other two. How-
ever, in scenarios where accuracy is less critical, this rate
can be further augmented. It is important to acknowledge
that increasing the classification speed may also exacerbate
the classifier’s power consumption. For example, E-LVQ
exhibits lower power consumption compared to the other two
implementations, but it also has a lower classification speed.
Therefore, for the same speed value, it would have higher
consumption but lower classification accuracy. In addition,
because the Euclidean distance circuit operates in voltage
mode, controlling currents through voltages leads to higher
currents at the nodes compared to biasing directly with current.
The tradeoff between classification speed and accuracy is
depicted in Fig. 20 for each classifier. Furthermore, the area
and power efficiency of the classifier’s circuit enable the

Fig. 20. Visual illustration of the tradeoff between the classifier’s operation
speed and classification accuracy.

parallel deployment of numerous identical classifiers, signif-
icantly enhancing the overall classification speed in practical
settings.

VII. DISCUSSION AND COMPARISON

In the existing literature, it is evident that analog classi-
fiers are typically designed as application-specific engines.
This specialization presents a challenge when attempting to
conduct a fair comparison across diverse implementations.
Consequently, there exists an opportunity to tailor the design
of these classifiers to cater to the same application, facilitating
a comprehensive assessment of performance across various
ML models and methodologies. Specifically, Table VI offers
a performance summary of this work alongside related analog
classifiers all within the brain tumor classification task.

All the summarized classifiers are implemented in a TSMC
90-nm CMOS process technology, with power supply rails
selected based on the operating region and a tradeoff between
higher accuracy and lower power consumption. All classifiers
were trained using the required software, which relied on
the mathematical models described in each implementation.
Subsequently, they were all designed using the TSMC 90-nm
CMOS process. At this stage, they underwent schematic-level
verification (except our work, which is verified at the layout
level too), and necessary enhancements were implemented to
optimize classification accuracy and speed while prioritizing
minimal power consumption. We followed the same design
process as outlined in Section IV. In cases where the archi-
tecture operates in saturation, we applied the corresponding
techniques specific to that operating region. The aforemen-
tioned process aimed to ensure a fair comparison, given that
the implementations were carried out using different technolo-
gies and for distinct classification tasks. It includes a variety
of analog classifiers, such as a radial basis function (RBF)
[40], an RBF-neural network (NN) [41], [54], an artificial NN
(ANN) [55], Bayes [42], a Gaussian mixture model (GMM)
[14], support vector machine (SVM) [43], [44], a K -means
[45], a support vector regression (SVR) [46], a support vec-
tor domain description (SVDD) [47], a self-organized map
(SOM) [48], a long short-term memory (LSTM) [49], a mul-
tilayer perceptron (MLP) [50], a fuzzy [51], a threshold [52],
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TABLE VI
ANALOG CLASSIFIERS’ COMPARISON ON THE BRAIN TUMOR DATASET

a cascaded-connected centroid [53], a spiking NN (SNN) [56],
and a pattern-matching (PM) classifier [57].

The configurations outlined in Table VI rely on mathemat-
ical model approximations. Furthermore, the implementations
referred to in [14], [40], [42], [43], [44], [48], [51], [52], and
[53] incorporate Gaussian function (bump) circuits as their
fundamental structural components. In these architectures, the
power supply rails are set to VDD = −VSS = 0.3 V. For the
remaining implementations, we selected power supply rails
between VDD = −VSS = 0.6 V and VDD = −VSS = 0.75 V.
These architectures operate in the saturation region, requiring
a higher supply voltage. The foundational design principle
of these endeavors centers on the utilization of multivariate
Gaussian functions, resulting in the integration of cascaded
circuits. At the circuit level, the bias current of each bump
circuit becomes the output current of the preceding one. The
primary limitation stems from the degradation of the current

from the input to the output of the multivariate Gaussian
function circuit. In comparison to alternative studies, this work
distinguishes itself by offering the ability to control weights
for each individual feature, as opposed to adjusting the overall
probability for the entire class. In addition, existing method-
ologies exhibit a constrained operating range for classifiers.
If the chosen parameter from training is near the power supply
edges, the output current decreases compared to a parameter at
the center of the power supply. As a consequence, the output
current of the Gaussian function circuit may decrease to a level
below the operating current for subsequent circuits.

Regarding architectural complexity, there exists a spectrum
of approaches, ranging from low to high complexity, with
the specific ML model and the nature of the approximation
influencing the level of complexity. In the evaluation of
architectures, including E-LVQ, Si-LVQ, and Sq-LVQ emerges
as the most effective in achieving high classification accuracy
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and performance. This superiority is attributed to the qual-
ity of the Sq-LVQ architecture’s approximation compared
to other approaches. The proposed implementations surpass
all other classifiers in Table VI concerning mean accuracy,
except for MLP and LSTM algorithms, which excel in balanc-
ing model complexity and hardware-approximation efficiency.
Notably, this heightened performance is achieved with the least
energy consumption per classification compared to alternative
approaches. While the threshold classifier achieves the lowest
power consumption, it does so at the expense of accuracy and
processing speed due to the simplicity of its model. Moreover,
this work provides a tradeoff between power consumption,
energy per classification, and classification accuracy, empha-
sizing the flexibility to sacrifice speed for power consumption
in biomedical applications [58].

An additional point of interest is comparing LVQ with a
high-complexity algorithm, as shown in Table VI. Specif-
ically, LVQ is straightforward and interpretable, making it
suitable for smaller datasets with clear class boundaries.
It exhibits moderate scalability and performs well on datasets
with a small number of features. In addition, it can achieve
higher performance and greater power efficiency in all related
classification tasks compared to simpler ML models that
achieve good accuracy [14], [40], [42], [43], [44], [48], [51],
[52], [53].

For the brain tumor classification task, we adapted several
models to effectively handle the unique characteristics of
our dataset (for comparison purposes). The LSTM model,
typically designed for sequential data, was adapted by prepro-
cessing feature vectors into temporal sequences. This approach
allowed the model to capture sequential dependencies within
the dataset, crucial for identifying subtle patterns indicative
of different tumor types. Although LSTM models are typi-
cally used for temporal data, we adapted them for this task
by considering sequences of feature vectors over multiple
instances as pseudotime steps. This approach allowed the
LSTM to capture underlying patterns within the dataset. K -
means is primarily a clustering algorithm and is not directly
suitable for classification without additional steps. It has high
scalability but limited performance for classification without
additional adaptations. For K -means, we first clustered the
data into distinct groups. Each cluster was then assigned a
class label based on the majority of the training samples
within the cluster. For new samples, the nearest cluster centroid
determined the predicted class.

SVDD is specialized for anomaly detection, may not per-
form well on traditional classification tasks, and has moderate
scalability. SVR was originally designed for regression but can
be adapted for classification using additional techniques. It has
moderate scalability with variable performance depending on
hyperparameter tuning and data characteristics. More specif-
ically, it was adapted by training it to predict a continuous
value that was then mapped to class labels. This mapping
was done by establishing thresholds that corresponded to
different classes, effectively converting the regression task into
a classification task. SOM was used to create a topological
map of the input data. During the classification phase, each
input was mapped to the nearest node on the SOM grid, and

the class label was assigned based on the majority class of the
training samples mapped to that node.

ANN is versatile and suitable for various classification tasks
but requires tuning to prevent overfitting, and it has high
scalability. SNN is appropriate for tasks requiring temporal
processing and event-driven computation but may necessitate
specific training methods. Also, it has high scalability. Fur-
thermore, MLP is versatile and capable of handling various
classification tasks with high scalability but may require
careful tuning to avoid overfitting. The ANN model used in
this study refers to a simple feedforward NN with a single
hidden layer, while the MLP model incorporates multiple
hidden layers and more sophisticated training techniques, such
as dropout and batch normalization, to enhance performance
and prevent overfitting.

In addition, we considered feature dimensionality and model
complexity in our implementations. For instance, models with
higher complexity and more parameters, such as deep MLPs,
were carefully tuned to balance accuracy and energy efficiency.
We observed that increasing the feature dimensionality gen-
erally improved classification accuracy but also led to higher
energy consumption. Therefore, feature selection techniques
were employed to identify the most informative features,
reducing dimensionality while maintaining high accuracy.
The choice of parameters, such as feature dimensionality
and model complexity, directly impacts the energy efficiency
per classification for different models. By optimizing these
parameters, we were able to achieve a balance between high
performance and low power consumption across the related
models.

VIII. CONCLUSION

This study presented a design methodology focused on
analog integrated architecture for the LVQ algorithm, targeting
low-power applications and achieving high accuracy (more
than 96.00%). The high-level architecture consists of DCCs,
CMs, and a CC. Three primary approaches were established,
distinguished by the circuit used for DCC. All implementa-
tions were power-efficient (less than 650 nW) and low supply
voltage (only 0.6 V). Also, they are robust under PVT vari-
ations both over Corners and Monte Carlo simulations. Each
specific approach was tested in a brain tumor classification
task and compared with a software-based implementation and
related analog classifiers. The designs were developed and
simulated in a 90-nm CMOS process using the Cadence IC
Suite.
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